If it's not what You are looking for type in the equation solver your own equation and let us solve it.
96x^2+276x=0
a = 96; b = 276; c = 0;
Δ = b2-4ac
Δ = 2762-4·96·0
Δ = 76176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{76176}=276$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(276)-276}{2*96}=\frac{-552}{192} =-2+7/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(276)+276}{2*96}=\frac{0}{192} =0 $
| 2x+7=97-8x | | 3x-10=-5x+5 | | 7x+9=54−2x | | 4x+12=75−5x | | 6x*6=10x-25 | | 13+x/5=19 | | 1-12x=38 | | X/2-10+2X=y | | -2X+10+X/2=m | | -2X-10+X/2=y | | 3x(x+8)-2=4x+1 | | a•|•6+1=15 | | 3x^2-32x+108=0 | | 2x+4x+5=78 | | 5p^2+13p+8=0 | | 2x+4x+3.3=78 | | P=40+t*3 | | 3) 59x+(3x–27)=4x+(13-2x) | | 59x+(3x–27)=4x+(13-2x) | | 5x–(15–4x)=3 | | 5x–(15–4x)=3 | | 6x+1=2x-11 | | 2x(x-1)=10 | | 7x+(16+3x)=21 | | -(x➗3)=-8-10x | | 3xx+2=14 | | -(x~3)=-8-10x | | 2x+4x+14=78 | | 2x+4x+14=157 | | 2x+4x+12=78 | | -62=5(3x-2)-2(6-5x) | | 3*(x+2)=2x+3 |